(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
equal(0, 0) → true
equal(s(x), 0) → false
equal(0, s(y)) → false
equal(s(x), s(y)) → equal(x, y)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0', v) → 0'
min(u, 0') → 0'
min(s(u), s(v)) → s(min(u, v))
equal(0', 0') → true
equal(s(x), 0') → false
equal(0', s(y)) → false
equal(s(x), s(y)) → equal(x, y)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
minus(x, y) → cond(equal(min(x, y), y), x, y)
cond(true, x, y) → s(minus(x, s(y)))
min(0', v) → 0'
min(u, 0') → 0'
min(s(u), s(v)) → s(min(u, v))
equal(0', 0') → true
equal(s(x), 0') → false
equal(0', s(y)) → false
equal(s(x), s(y)) → equal(x, y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
equal,
minThey will be analysed ascendingly in the following order:
equal < minus
min < minus
(6) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
equal, minus, min
They will be analysed ascendingly in the following order:
equal < minus
min < minus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
equal(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
equal(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
equal(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
min, minus
They will be analysed ascendingly in the following order:
min < minus
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_s:0'3_0(
n504_0),
gen_s:0'3_0(
n504_0)) →
gen_s:0'3_0(
n504_0), rt ∈ Ω(1 + n504
0)
Induction Base:
min(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_s:0'3_0(+(n504_0, 1)), gen_s:0'3_0(+(n504_0, 1))) →RΩ(1)
s(min(gen_s:0'3_0(n504_0), gen_s:0'3_0(n504_0))) →IH
s(gen_s:0'3_0(c505_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
min(gen_s:0'3_0(n504_0), gen_s:0'3_0(n504_0)) → gen_s:0'3_0(n504_0), rt ∈ Ω(1 + n5040)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
minus
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(14) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
min(gen_s:0'3_0(n504_0), gen_s:0'3_0(n504_0)) → gen_s:0'3_0(n504_0), rt ∈ Ω(1 + n5040)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
min(gen_s:0'3_0(n504_0), gen_s:0'3_0(n504_0)) → gen_s:0'3_0(n504_0), rt ∈ Ω(1 + n5040)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
equal(
min(
x,
y),
y),
x,
y)
cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
equal(
0',
0') →
trueequal(
s(
x),
0') →
falseequal(
0',
s(
y)) →
falseequal(
s(
x),
s(
y)) →
equal(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
cond :: true:false → s:0' → s:0' → s:0'
equal :: s:0' → s:0' → true:false
min :: s:0' → s:0' → s:0'
true :: true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
equal(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)